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Introduction 

This report presents the numerical solution to the 2D steady state problem in a rectangular 

domain. I started this project with a simple 2D steady state problem in a rectangular domain that 

only had conductivity occurring as the mode of heat transfer. I was able to confirm my numerical 

solution using an analytical solution. After confirming that my numerical solution was accurate, I 

was able to modify the solution to the requirements of part 2. For this part, the rectangular 

domain contained a circle that contained heat generation. It also introduced convection to the 

northern surface of the domain and made the east and west surfaces adiabatic, Figure 1 

demonstrates the design requirements. Using the model that was generated in part 1 I was able to 

modify it to meet the design requirements of this part. After doing this I calculated the error that 

occurs as you increased the number of nodes in the domain.  

 

Figure 1 Design Requirements 

Methods 

To start the finite difference method (FDM) we start with the energy balance equation: 

 𝑑𝐸

𝑑𝑡
= 0 = 𝐸̇𝑖𝑛 − 𝐸̇𝑜𝑢𝑡 + 𝐸̇𝑔𝑒𝑛 

 

 

(Eqn. 1) 

We set the energy balance equation equal to 0 because the energy is not changing in time. We 

have a constant temperature at each surface through time. For this problem we are told that the 

energy generation is also equal to 1000 in the circle but 0 throughout the rest of the domain. Due 

to this, we can reduce the above equation into the following: 

 𝐸̇𝑖𝑛 − 𝐸̇𝑜𝑢𝑡 + 𝐸̇𝑔𝑒𝑛 = 0 

 

(Eqn. 2) 



Using this as our base, we can set up nodes throughout the plate in order to estimate the heat 

transfer through the plate. A node is just a point on the plate that we decide to look at. The more 

nodes we place on the plate, the more accurate the estimation becomes. Once we decide how 

many nodes, we want on the plate we begin to analyze how the heat transfer through each node. 

To do this we must first classify each node. There are 9 classifications that a node can have. The 

first four classifications are “corner nodes” this means that the node is closest to the corner of the 

plate. There are four corner nodes because there are four corners in the array on nodes. The next 

4 classifications are “surface nodes” these are the nodes that are closest to the surface of the plate 

and are in between 2 corner nodes. There are four surface nodes because there are 4 sides to the 

array of nodes. The final classification is an “interior node” this is a node that is surrounded by 

other nodes and is not closest to a surface. Due to the heat generation of this problem that is 

located in the circle, these 9 classifications can have another classification on top of their original 

classification. They can be labeled as “heat generating nodes” if they are in the circle of our 

problem.  

In order to examine the heat flow through the plate, we look at how the heat flows through the 

nodes. To do this we examine the heat flow through each individual node coming from all 4 

directions. We use the conduction heat transfer equation below to examine the heat flow through 

the node: 

 
𝑞 = −𝑘𝐴𝑥

𝑑𝑇

𝑑𝑥
 

 

 

(Eqn. 3) 

 

Using this equation, we can set up the heat transfer through a node from all four directions. For 

example, if we set up a 3x3 node matrix where each node is dx apart in the x direction and dy 

apart in the y direction as shown below: 
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We would be able to analyze the heat transfer through each node. First, we would need to 

classify each node. The corner nodes are [1,3,7,9], the surface nodes are [2,4,6,8], the interior 

node is [5] and any node that is located in the heat generation circle is a “heat generation node”. 

After classifying the nodes, we are able to define the heat transfer coming through each side of 

every node. If it is a southern corner node or a surface node, the difference in temperature from 

the southern direction is based on the southern surface temperature. This gives us an equation 

such as: 

 
𝑞𝐵𝑜𝑡𝑡𝑜𝑚 = −𝑘

(𝑇𝑆𝑜𝑢𝑡ℎ − 𝑇(7))

𝑑𝑦 2⁄
(𝑑𝑥 ∙ 1) 

 

 

(Eqn. 4) 

This equation shows the heat transfer through node seven from the bottom of the node. As you 

can see because node seven is a corner node  on the southern surface the temperature difference 

is based on the southern surface temperature. I have also substituted dx*1 for the cross-sectional 

area. This is based on the assumption that the plate is 1 meter thick. Also notice that the dx under 

the fraction becomes (dy/2) this is distance between node 7 and the wall. There is one more step 

to take to reduce this equation to its final form. That is dividing everything by k. We can do this 

because when we plug this equation into the energy balance equation (Eqn. 2), we will see that k 

is on both sides of the equation. This means that we can divide out the k on both sides of the 

equation. This reduces the equation to: 

 
𝑞𝐵𝑜𝑡𝑡𝑜𝑚 = −

𝑘

𝑘

(𝑇𝑆𝑜𝑢𝑡ℎ − 𝑇(1))

𝑑𝑦 2⁄
(𝑑𝑥 ∙ 1) 

 

 

(Eqn. 5) 

Now we can set up the equation to find the heat transfer from the left of node 7. This is the 

equation shown below.  

 𝑞𝐿𝑒𝑓𝑡 = 0 

 

 

(Eqn. 6) 

The heat transfer coming from the left of node 7 is 0 because the west surface is adiabatic. This 

means that no heat transfer occurs across this boundary. This means that for all corner nodes and 

east and west surface nodes, the q coming from the outer wall is 0 due to the fact that the walls 

are adiabatic.  

Equations 5 and 6 show us how to deal with nodes closest to the east, west and south surfaces, 

but what about when the next closest temperature point is another node? This can be seen in 

equation 7.  

 
𝑞𝑅𝑖𝑔ℎ𝑡 = −

𝑘

𝑘

(𝑇(2) − 𝑇(1))

𝑑𝑥
(𝑑𝑦 ∙ 1) 

 

 

(Eqn. 7) 

In equation 7 the temperature difference references the node closest to the right of node 1. Due to 

this, we see that the change in x is no longer divided by 2. This is because we are now traveling 

the full distance between nodes.  



On the northern surface of the domain there is convection that occurs from the surrounding air. 

This requires a different equation than the one we used for conduction. We use equation 8 for the 

qTop on all of the northern surface, and northern corner nodes.  

 
𝑞𝑇𝑜𝑝 =

ℎ

𝑘
(𝑇𝑖𝑛𝑓 − 𝑇(1)) ∙ (𝑑𝑥 ∙ 1) 

 

 

(Eqn. 8) 

The next step is to analyze the affect that the 𝑞̇𝑔𝑒𝑛 has on the heat transfer. To do this we find 

which nodes are located in the circle and add equation 9 to the total heat transfer of this node. 

 
𝑞𝑔𝑒𝑛 =

𝑞̇𝑔𝑒𝑛 ∙ (𝑑𝑥 ∙ 𝑑𝑦)

𝑘
 

 

 

(Eqn. 9) 

Using equations 5, 6, 7, 8 and 9 as a reference, I was able to build the heat transfer equations 

coming from all four directions for every node and find the heat transfer coming from the heat 

generation.  

After defining the heat transfer equations for every node, I then added the four equations up at 

each node. Adding the equations up tells us the total heat transfer into each node, the sum of 

these equations represents 𝐸̇𝑖𝑛 − 𝐸̇𝑜𝑢𝑡 + 𝐸̇𝑔𝑒𝑛  in equation 2. When we plug that sum into 

equation 2 it is equal to 0. We can see this in equation 10 below. This is what allowed us to 

divide out the k in the earlier equation.  

 𝑞𝑅𝑖𝑔ℎ𝑡 + 𝑞𝐿𝑒𝑓𝑡 + 𝑞𝑇𝑜𝑝 + 𝑞𝐵𝑜𝑡𝑡𝑜𝑚 + 𝑞𝑔𝑒𝑛

= 0 

(Eqn. 10) 

 

Now we will plug in the equations that we found for the heat transfer from each direction. Then 

we will subtract the surface temperatures to the right side of the equation.  As an example, I have 

included the reduced equation of node 1 in equation 11 below. 

 
[(−

ℎ

𝑘
∙ 𝑑𝑥) − 2] 𝑇(1) + 1𝑇(2) + 1𝑇(4) = −

ℎ

𝑘
∙ 𝑇∞ ∙ 𝑑𝑥 

(Eqn. 11) 

 

Then this process is repeated for every node in the array. After all the nodes have been 

calculated, 2 matrices can be created. The first matrix, matrix A, is created by assigning the 

coefficient in front of each temperature value to a position in the matrix. If there are 9 nodes in a 

system, then matrix A will be a 9x9 matrix. Each row in the matrix corresponds to a node, the 

first row corresponds to the first node. Then the coefficient that is in front of each temperature 

value will be placed in this row. The column corresponds to the node’s temperature that follows 

the coefficient. For example, equation 11 is referring to the heat transfer through node 1, so the 

first row in matrix A would go as follows: [(−
ℎ

𝑘
∙ 𝑑𝑥 − 2)  1 0 1 0 0 0 0 0] . Repeating this 

process to fill out the rest of matrix A allows us to move to the next step. Filling out matrix b is 

very easy. Just like in matrix A, the row corresponds to the node number. We will take the entire 



right side of equation 11 and place that into matrix b. For nodes that lie in the heat generation 

circle, we need to subtract 𝑞𝑔𝑒𝑛 from that node’s matrix b position. Repeat this for every node.  

This process is shown in the MATLAB code displayed in Appendix A. It is shown in the 

“Populate matrix A(i,j) & b(i)” section of the code. The code loops through each node and 

checks for the nodes position. Based on the position it generates the A matrix and b matrix 

values and identifies the node type.  

After populating both matrix A and b we can plug those matrices into equation 12: 

 𝑇 ∙ 𝐴 = 𝑏 (Eqn. 12) 

Solving for T gives us the Temperature at every node. This is completed in the “Solve for 

unknown vector T(i)” section of Appendix A.  

Temperature Solutions 

After solving for the Temperature at each node we must verify our solution. We will do this a 

couple of different ways. The first method is to verify the T at each node visually. To aid in this, 

the MATLAB attached in appendix A creates a surface plot of the temperature. This plot is 

shown in Figure 3.  

 
Figure 3 Temperature Surface Plot 

This plot allows us to verify that the temperature makes sense based on what is given in the 

problem. For our problem, there is convection the north surface with a free stream temperature of 

30 degrees Celsius, adiabatic east and west sides and a southern surface temperature of 10 

degrees. There is also heat generation at (0,0). Figure 3 verifies these conditions by showing a 

southern surface temperature of 10 degrees Celsius and a “hump” in the graph at (0,0). The hump 

represents the heat generation that is occurring in the circle at this location. The graph shows that 

the temperature disperses and lowers as you move away from (0,0) in any direction. Overall, 

Figure 3 verifies the conditions presented in our problem. 

In order to gain more insight, I have also plotted T as a heatmap plot. This plot is the plate in 2 

dimensions. The figure 4 allows us to visualize how the heat is diffusing through the plate and 

verify that our FDM model is accurate.   



 

Figure 4 Heat Map of Temperature 

Figure 4 confirms what we saw in figure 3. We see that there is a high spot of temperature at 

(0,0) and the heat dissipates evenly through the surface to be at 10 degrees Celsius on the 

southern border. 

In order to ensure that our code accurately assigned each node’s classification, I have displayed 

each node on a heat map shown in Figure 5  

 

Figure 5 Node Identification 



Figure 5 displays each node in its proper location in the nodal array. It also displays the 

classification that the node was given. This allows me to confirm that each node was given the 

proper classification and therefore the correct math was completed to fill both matrix A and b.  

Heat Rate Solution 

After verifying visually that the FDM model works properly, I needed calculate the heat rate 

coming from the top, right, bottom, left side and generation of each node. Then totaled those up 

for each node. This gave me the total heat rate at each node. From that, I was able to verify my 

model another way. Another visual representation. Figure 6 shows the heat rate at each node.  

 
Figure 6 Heat Rate Surface Map 

This again verifies our model because it shows that the heat rate is higher where there is a higher 

temperature difference, such as in the heat generation circle. It also shows that there are “hills 

and valleys” of heat transfer throughout the plate. These hills and valleys end up canceling each 

other out when we sum all the heat transfer up across all the nodes. We find that the total heat 

transfer is 3.233e-13 when we have 200 nodes generated. It is important to note that the total 

heat rate should sum up to zero according to the energy balance equation shown in equation 2. 

This graph is set to a scale of 10-13 this means that the total heat transfer at each node is very 

close to zero. This satisfies the thermal energy balance expression shown in equation 2. 



 

Figure 7 Heat Rate Surface y-direction 

Figure 7 is the same as figure 6 but it is oriented to only show the heat rate as you move across 

the y axis. This allows us to see that the magnitude of q is larger at the heat generation circle and 

it gets slightly smaller as we move to the right (southern face). This again proves what we expect 

to see.  

We also wanted to calculate how much heat transfer was occurring across each surface. To do 

this I set the appropriate side at each node that is along the surface equal to the matching surface 

heat transfer. I do this because if the energy is entering the node, then it must be leaving from the 

surface. For example, in Figure 2 node 1 is in the Northwest corner. So, for node 1 I set qNorth = 

qTop . After doing this for every node I was able to sum up the heat transfer across each surface 

and interpret that data. 

 

 

 

 

Table 1 Heat Rate Out of Domain Surfaces 

Table 1 shows the heat transfer across each of the surfaces. This data also verifies that our model 

is working correctly. It shows that there is a positive heat transfer on the north surface and 

negative heat transfers on the southern surface, with the east and west surfaces being 0 as they 

are adiabatic.  

The next step was to develop the error that is caused by doubling the discretization. To do this I 

ran the code under the first discretization of 10x20 and then looped the code to increase in node 

size each iteration until it reached 20x40. This allows us to compare the total heat transfer from 

each of the different discretization sizes. The results of this error is demonstrated in figure 8. 

 Surface q 

1 "North" 22.3503 

2 "East" 0 

3 "South" -187.6396 

4 "West" 0 



 
Figure 8 Error for Discretization 

Figure 8 shows us that the error fluctuates as we change the discretization, but it follows an 

overall downward trend. This makes sense due to the fact that the heat generation is only in a 

small portion of the domain. The cause of the fluctuations is due to how many nodes land in the 

circle. When the ratio of 
ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒

𝑛𝑜𝑛 ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒
 is higher the q is slightly higher which cause an 

increase in error. However, the trend shown in this graph shows us that the mode nodes we add 

the more accurate the model becomes. 

Discussion 

This numerical project taught me how to approach a problem by solving a simpler version of a 

problem and verify that your model works before moving onto a more difficult problem that 

cannot be as easily verified. I learned how to apply the finite difference method to solve the 

steady-state temperature profile and heat rate for a complex configuration with non-uniform 

boundary conditions. By using the framework developed in Part I, I was able to modify the code 

to handle the new domains and boundary conditions. Overall, this project taught me the 

importance of choosing appropriate numerical methods for solving complex heat transfer 

problems, as well as the importance of verifying the numerical solution to ensure its accuracy. I 

also gained practical experience in using MATLAB to develop and implement numerical 

solutions to complex problems. 

  



Appendix A 

ME 450 

Programmer: Phillip Krigbaum adapting from J. Wade 2023, adapting from D. Willy 2020 

Date: March 24, 2023 

clear; clc; close all;   %Clearing/closing prior work 

format short 
 

 

Given: 

%Problem Geometry 

L = 2; %length of the domain in the x-direction, [m] 

W = 4; %length of the domain in the y-direciton, [m]  

d = 1; %diameter of the circle [m] 

Area = pi*(d/2)^2; %Area of the circle [m^2] 
 

%Material/Domain Properties 

q_dot_circle = 1000; %heat generation of the circle [W/m2] 

k = 15; %Thermal conductivity of the solid domain, [W/mK] 
 

%Boundary Conditions 
 

T_inf = 30; %North boundary temperature, [C] 

h = 20; % Thermal convection coefficient of the air [W/m2K] 

T_bot = 10; %South boundary temperature, [C] 
 

Find:  Temperature Profile 

Assumption:  2D flow, SS, constant k 

Solve: 

Discretize the Problem 

%Problem Discretization - needs to be FLEXIBLE 

n_x = 10:1:20; 

for j = 1:length(n_x) 

n_y = (W/L)*n_x(j); %discretized units in the y-direction 

%discretization in x and y-direction are the same because the geometries 

%are equivalent.   
 



dx = L/n_x(j); %discretization size in x-direction, [m] 

dy = W/n_y; %discretization size in y-direction, [m] 
 

N = n_x(j)*n_y; %Total unknown temperature nodes, [nd] 
 

%Note formulating total unknown temperatures means I can vary mesh size w/o 

%consequence to remaining equations. 
 

x = (-L/2)+(dx/2):dx:(L/2)-(dx/2); % x-coordinates of T values (left to right) 

y = (d)-(dy/2):-dy:(-W+d)+(dy/2);  
 

[X,Y]=meshgrid(x,y); 
 

xx = reshape(X',N,1); 

yy = reshape(Y',N,1); 

 

Initialize matrices and vectors 

A = zeros(N); %Initilizs my matrix coefficient A based on total unknown nodes, 

[C] 

b = zeros(N,1); %Initializes the known constants based on total unknown nodes, 

[C] 

T = zeros(N,1); %Intializes unknown temperature, [C] 
 

c = zeros(N,1); %Initializes a vector that identifies the node type (e.g. NW 

corner, interior, etc) 

 

Populate matrix A(i,j) & b(i) 
 

for i = 1:N  %Run through all a(i,j) and b(i) coefficients, remember  
 

    if xx(i) <= -L/2+dx && yy(i) >= (d-dy)  %NW Corner 
 

        A(i,i) = (-(h/k)*dx)-2; %T(i) %temperature central to the nodal equation 

        A(i,i+1) = 1; % right 

        A(i,i+n_x(j)) = 1; % bottom, one row down 
 



        b(i) = (-(h/k)*T_inf*dx); %known constants for T(i = 1) 

        c(i) = 1; %identfies node type 
 

       

    elseif xx(i) > (L/2 - dx) && yy(i) > (d-dy)% NE Corner 

        A(i,i) = (-(h/k)*dx)-2;  

        A(i,i-1) = 1; %left 

        A(i,i+n_x(j)) = 1; %below 

        b(i) = (-(h/k)*T_inf*dx); %knowns 

        c(i) = 2; %node type 

     

          

    elseif yy(i) > (d- dy) %top edge - Dirchlet 

        A(i,i) = (-(h/k)*dx)-3; %temperature central to the nodal equation 

        A(i,i-1) = 1; %left 

        A(i,i+1) = 1; %right 

        A(i,i+n_x(j)) = 1; % bottom 

        b(i) = (-(h/k)*T_inf*dx); %known values 

        c(i) = 3; %node type 
 

         
 

    elseif  xx(i) < -L/2+dx && yy(i) < (-W+d)+dy  %SW Corner 

        %xx(i) >= (L-dx/2) && yy(i) >= (W-dy/2) %NE Corner 

        A(i,i) = -4; %temp central to nodal eqn 

        A(i,i+1) = 1; %right 

        A(i,i-n_x(j)) = 1; %top 

        b(i) = -2*T_bot; %knowns 

        c(i) = 4; %node type 
 

         
 

    elseif xx(i) >= (L/2-dx) && yy(i) <= (-W+d+dy) %SE Corner 

        A(i,i) = -4; %temp central to nodal eqn 

        A(i,i-1) = 1; %left 

        A(i,i-n_x(j)) = 1; %top 

        b(i) = -2*T_bot; %knowns 

        c(i) = 5; %node type 
 

         

    elseif xx(i) < -(L/2)+dx %West Surface - Dirchlet 

        A(i,i) = -3; %temp central to nodal eqn 



        A(i,i+1) = 1; %right 

        A(i,i-n_x(j)) = 1; %top 

        A(i,i+n_x(j)) = 1; %below 

        b(i) = 0; %knowns 

        c(i) = 6; %node type     
 

         
 

    elseif xx(i) > L/2- dx %East Surface - Convective BC 

        A(i,i) = -3; %temp central to nodal eqn 

        A(i,i-1) = 1; %left 

        A(i,i-n_x(j)) = 1; %top 

        A(i,i+n_x(j)) = 1; %below 

        b(i) = 0; %knowns 

        c(i) = 7; %node type 

           
 

     elseif yy(i) < (-W+d)+dy %South Surface - Adiabatic BC 

        A(i,i) = -5; %temp central to nodal eqn 

        A(i,i-1) = 1; %left 

        A(i,i+1) = 1; %right 

        A(i,i-n_x(j)) = 1; %top 

        b(i) = -2*T_bot; %knowns 

        c(i) = 8; %node type 
 

    else %Interior Node 

        A(i,i) = -4; %temp central to nodal eqn 

        A(i,i-1) = 1; %prior row 

        A(i,i+1) = 1; %right 

        A(i,i-n_x(j)) = 1; %top 

        A(i,i+n_x(j)) = 1; %below 

        b(i) = 0; %knowns 

        c(i) = 9; %node type 

    end 

    if sqrt((xx(i))^2+(yy(i))^2)<=(d/2)^2 

         b(i) = b(i) - ((q_dot_circle*(dx*dy))/k); 

    end 

end 
 

 

Solve unknown vector T(i) 

T = A\b; %Matlab's Matrix Inversion Solver 



 

Visualize the temperature distribution 

1) Turn the (Nx1) T vector into a 2D (n_x) x (n_y) array using "reshape" function 

T_FD= reshape(T,n_x(j),n_y)';  %Reshaping finite difference solved T_FD vector 

into the 2D array (n_x by n_y) 
 

3) Visualize Temperature data as a surface map 

figure(1) 

surf(X,Y,T_FD)  %Note surface plot requires the X,Y coordinate arrays in order to 

plot 

 

 

 
 

 

 

xlabel('x-dir (m)') 

ylabel('y-dir (m)') 

zlabel('Temperature (Celsius)') 



zlim([5 40]) 

colorbar 
 

4) Visualize temperature data as a heat map 

figure(2) 

heat = heatmap(x,y,T_FD,'Colormap',autumn); 

 

 

 
 

 

 

% Note, a heat map requires the vectors of x and y, not the X,Y arrays 
 

5) Visualize temperature data as a contour map 

figure(3) 

contourf(X,Y,T_FD) 

view(90,90) 

colorbar 

xlabel('x-Direction'); 



ylabel('y-Direction'); 
 

6) Check that nodes were assigned correctly 

nodes = reshape(c,n_x(j),n_y)';                                                                            

nodecheck = heatmap(x,y,nodes,"colormap",autumn); 

 

 

 
 

 

 

7) Verify the numerical simulation 

%initializing thermal energy flow vectors for each node and each domain 

%surface 
 

qtotal = zeros(N,1); %Net energy flow through the nodal finite volume 

qnorth = zeros(N,1); %Net energy flow through the north surface 

qeast  = zeros(N,1); %Net energy flow through the east surface 

qsouth = zeros(N,1); %Net energy flow through the south surface 



qwest  = zeros(N,1); %Net energy flow through the west surface 
 

for i = 1:N  %Run the energy balance through all nodes 
 

    %%Solve qtotal at each node using the newly solved temperatures 
 

    if xx(i) <= -(L/2)+dx && yy(i) >= d-dy  %NW Corner 
 

        qtop   = h * (dx*1)*(T_inf - T(i));  % Top Boundary Flow 

        qright = k * (dy*1)*(T(i+1) - T(i))/dx;  % Right Boundary Flow 

        qleft  = 0;  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T(i+n_x(j)) - T(i))/dy;% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = qtop; %Net energy flow through the north surface 

        qeast(i)  = 0; %Net energy flow through the east surface 

        qsouth(i) = 0; %Net energy flow through the south surface 

        qwest(i)  = qleft; %Net energy flow through the west surface 
 

     elseif xx(i) > ((L/2) - dx) && yy(i) > (d-dy)% NE Corner 

        qtop   = h * (dx*1)*(T_inf - T(i));  % Top Boundary Flow 

        qright = 0;  % Right Boundary Flow 

        qleft  = k * (dy*1)*(T(i-1) - T(i))/(dx);  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T(i+n_x(j)) - T(i))/dy;% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = qtop; %Net energy flow through the north surface 

        qeast(i)  = qright; %Net energy flow through the east surface 

        qsouth(i) = 0; %Net energy flow through the south surface 

        qwest(i)  = 0; %Net energy flow through the west surface 

          

     elseif yy(i) > (d - dy) %top edge - Dirchlet 

        qtop   = h * (dx*1)*(T_inf - T(i));  % Top Boundary Flow 

        qright = k * (dy*1)*(T(i+1) - T(i))/dx;  % Right Boundary Flow 

        qleft  = k * (dy*1)*(T(i-1) - T(i))/(dx);  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T(i+n_x(j)) - T(i))/dy;% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = qtop; %Net energy flow through the north surface 

        qeast(i)  = 0; %Net energy flow through the east surface 

        qsouth(i) = 0; %Net energy flow through the south surface 



        qwest(i)  = 0; %Net energy flow through the west surface 
 

         
 

     elseif  xx(i) < -(L/2)+dx && yy(i) < (-W+d)+ dy  %SW Corner 

        qtop   = k * (dx*1)*(T(i-n_x(j)) - T(i))/(dy);  % Top Boundary Flow 

        qright = k * (dy*1)*(T(i+1) - T(i))/dx;  % Right Boundary Flow 

        qleft  = 0;  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T_bot - T(i))/(dy/2);% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = 0; %Net energy flow through the north surface 

        qeast(i)  = 0; %Net energy flow through the east surface 

        qsouth(i) = qbott; %Net energy flow through the south surface 

        qwest(i)  = qleft; %Net energy flow through the west surface 

         
 

     elseif xx(i) >= (L/2)-dx && yy(i) <= (-W+d+dy) %SE Corner 

        qtop   = k * (dx*1)*(T(i-n_x(j)) - T(i))/(dy);  % Top Boundary Flow 

        qright = 0;  % Right Boundary Flow 

        qleft  = k * (dy*1)*(T(i-1) - T(i))/(dx);  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T_bot - T(i))/(dy/2);% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = 0; %Net energy flow through the north surface 

        qeast(i)  = qright; %Net energy flow through the east surface 

        qsouth(i) = qbott; %Net energy flow through the south surface 

        qwest(i)  = 0; %Net energy flow through the west surface 
 

         

     elseif xx(i) < -(L/2)+dx %West Surface - Dirchlet 

        qtop   = k * (dx*1)*(T(i-n_x(j)) - T(i))/(dy);  % Top Boundary Flow 

        qright = k * (dy*1)*(T(i+1) - T(i))/dx;  % Right Boundary Flow 

        qleft  = 0;  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T(i+n_x(j)) - T(i))/dy;% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = 0; %Net energy flow through the north surface 

        qeast(i)  = 0; %Net energy flow through the east surface 

        qsouth(i) = 0; %Net energy flow through the south surface 

        qwest(i)  = qleft; %Net energy flow through the west surface 

         



 

     elseif xx(i) > (L/2)- dx %East Surface - Convective BC 

        qtop   = k * (dx*1)*(T(i-n_x(j)) - T(i))/(dy);  % Top Boundary Flow 

        qright = 0;  % Right Boundary Flow 

        qleft  = k * (dy*1)*(T(i-1) - T(i))/(dx);  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T(i+n_x(j)) - T(i))/dy;% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = 0; %Net energy flow through the north surface 

        qeast(i)  = qright; %Net energy flow through the east surface 

        qsouth(i) = 0; %Net energy flow through the south surface 

        qwest(i)  = 0; %Net energy flow through the west surface 
 

     elseif yy(i) < (-W+d)+dy %South Surface - Adiabatic BC 

        qtop   = k * (dx*1)*(T(i-n_x(j)) - T(i))/(dy);  % Top Boundary Flow 

        qright = k * (dy*1)*(T(i+1) - T(i))/dx;  % Right Boundary Flow 

        qleft  = k * (dy*1)*(T(i-1) - T(i))/(dx);  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T_bot - T(i))/(dy/2);% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = 0; %Net energy flow through the north surface 

        qeast(i)  = 0; %Net energy flow through the east surface 

        qsouth(i) = qbott; %Net energy flow through the south surface 

        qwest(i)  = 0; %Net energy flow through the west surface 

     else %Interior Node 

        qtop   = k * (dx*1)*(T(i-n_x(j)) - T(i))/(dy);  % Top Boundary Flow 

        qright = k * (dy*1)*(T(i+1) - T(i))/dx;  % Right Boundary Flow 

        qleft  = k * (dy*1)*(T(i-1) - T(i))/(dx);  % Left Boundary Flow 

        qbott  = k * (dx*1)*(T(i+n_x(j)) - T(i))/dy;% Bottom Boundary Flow 
 

        qtotal(i) = qtop + qright + qleft + qbott; 

        qnorth(i) = 0; %Net energy flow through the north surface 

        qeast(i)  = 0; %Net energy flow through the east surface 

        qsouth(i) = 0; %Net energy flow through the south surface 

        qwest(i)  = 0; %Net energy flow through the west surface 

    end 

    if sqrt((xx(i))^2+(yy(i))^2)<=(d/2)^2 

         qtotal(i) = qtotal(i) + (q_dot_circle*dy*dx); 

    end 

end 

 

 



Heat Rate Solution: 

figure(4) 

qtotall = reshape(qtotal,n_x(j),n_y)'; 

surf(X,Y,qtotall) 

 

 

 
 

 

 

title('Heat Rate Surface'); 

xlabel('x-direction (m)'); 

ylabel('y-direction (m)'); 

zlabel('Heat Rate (q)'); 
 

qt = sum(qtotal) 

qt = 3.2330e-13 

qt = -1.4396e-12 

qt = -1.9131e-12 

qt = -3.9108e-12 

qt = -7.8071e-13 



qt = -1.4952e-12 

qt = -8.4377e-13 

qt = -5.8357e-12 

qt = 4.2255e-12 

qt = -8.4518e-12 

qt = -5.5493e-12 

qnorth = sum(qnorth); 

qeast = sum(qeast); 

qsouth = sum(qsouth); 

qwest = sum(qwest); 
 

 

 

Surfaces = table('Size',[4 

2],'VariableTypes',{'string','double'},'VariableNames',{'Surface','q'}); 

Surfaces(1:4,1:2) = {'North',qnorth;'East', qeast;'South', qsouth;'West', qwest} 

Surfaces = 4×2 table  

  Surface q 

1 "North" 25.8065 

2 "East" 0 

3 "South" -185.8065 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" 22.3503 

2 "East" 0 

3 "South" -187.6396 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" 57.1429 

2 "East" 0 

3 "South" -168.2540 

4 "West" 0 

Surfaces = 4×2 table  



  Surface q 

1 "North" -8.3571 

2 "East" 0 

3 "South" -204.6607 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" -28.7895 

2 "East" 0 

3 "South" -216.1084 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" 25.6228 

2 "East" 0 

3 "South" -185.6228 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" 8 

2 "East" 0 

3 "South" -195.5000 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" 12.8342 

2 "East" 0 

3 "South" -192.7650 

4 "West" 0 

Surfaces = 4×2 table  



  Surface q 

1 "North" 1.5779 

2 "East" 0 

3 "South" -199.1088 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" -20.8757 

2 "East" 0 

3 "South" -211.8113 

4 "West" 0 

Surfaces = 4×2 table  

  Surface q 

1 "North" 25.5319 

2 "East" 0 

3 "South" -185.5319 

4 "West" 0 

 

if abs(qt) <10^(-10) 

    disp ('This Satisfies our Energy Balance Equation') 

else 

    disp ('This does not satisfy our Energy Balance Equation') 

end 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

This Satisfies our Energy Balance Equation 

 

Error Calculation 

clear sum 



for i = 1:N 

    error(j) = sum(qtotal(i)); 

end 
 

end 
 

figure(6) 

plot(n_x,error) 

ylim("auto") 

xlabel('Length in x-dir (m)') 

ylabel('Total Error') 

title('Error vs Domain') 

 

 

 
 

 

 

 


